

Are the triangles similar? If so, write a similarity statement and name the postulate or theorem you used. If not, explain.

5. When a 6 ft tall man casts a shadow 18 ft long, a nearby tree casts a shadow 93 ft long. How tall is the tree?

How does \overline{XY} divide the sides of $\triangle ABC$?

...another way to look at the side-splitter thm...

...divides Δ into 2 proportional Δ 's. ...the inner ...and the outer $\Delta AXY \sim \Delta ABC$

a :: b

$$\frac{?}{?} = \frac{?}{?}$$

$$\frac{?}{?} = \frac{?}{?}$$

$$\frac{a}{?} = \frac{?}{?}$$

$$\frac{a}{b} = \frac{?}{?}$$

$$\frac{a}{b} = \frac{?}{?}$$

$$\frac{a}{b} = \frac{c}{d}$$

1 Solve for x:

AC AX

Thm 8-5: Triangle-Angle-Bisector Theorem If a ray bisects an \angle of a \triangle , then it divides the opposite side into 2 segments that are proportional to the 2 other sides of the \triangle . $\frac{CD}{?} = \frac{?}{?}$ $B \longrightarrow D$

Thm 8-5: Triangle-Angle-Bisector Theorem If a ray bisects an \angle of a \triangle , then it divides the opposite side into 2 segments that are proportional to the 2 other sides of the \triangle . $\frac{CD}{?} = \frac{?}{?}$ $B \longrightarrow D$

Thm 8-5: Triangle-Angle-Bisector Theorem If a ray bisects an \angle of a \triangle , then it divides the opposite side into 2 segments that are proportional to the 2 other sides of the \triangle . $\frac{CD}{?} = \frac{?}{?}$ $B \longrightarrow D$

Thm 8-5: Triangle-Angle-Bisector Theorem If a ray bisects an \angle of a \triangle , then it divides the opposite side into 2 segments that are proportional to the 2 other sides of the \triangle . $\frac{CD}{?} = \frac{?}{?}$ $B \longrightarrow C$

L8-5 Homework Problems

Pg 448 #1-16, 25-27, 29, 31-33, 36, 48-50